Wednesday, 25 October 2017

Gleitender Durchschnitt Msp430


Ich weiß, dies ist erreichbar mit Boost wie pro: Aber ich möchte wirklich vermeiden, mit Boost. Ich habe gegoogelt und keine geeigneten oder lesbaren Beispiele gefunden. Grundsätzlich möchte ich den gleitenden Durchschnitt eines laufenden Stroms eines Gleitkommazahlstroms mit den letzten 1000 Zahlen als Datenprobe verfolgen. Was ist der einfachste Weg, um dies zu erreichen, experimentierte ich mit einem kreisförmigen Array, exponentiellen gleitenden Durchschnitt und einem einfacheren gleitenden Durchschnitt und festgestellt, dass die Ergebnisse aus dem kreisförmigen Array meine Bedürfnisse am besten geeignet. Wenn Ihre Bedürfnisse sind einfach, können Sie nur versuchen, mit einem exponentiellen gleitenden Durchschnitt. Setzen Sie einfach, Sie eine Akkumulator-Variable, und wie Ihr Code sieht auf jede Probe, aktualisiert der Code den Akkumulator mit dem neuen Wert. Sie wählen eine konstante Alpha, die zwischen 0 und 1 ist, und berechnen Sie: Sie müssen nur einen Wert von Alpha zu finden, wo die Wirkung einer gegebenen Probe nur für etwa 1000 Proben dauert. Hmm, Im nicht wirklich sicher, dass dies für Sie geeignet ist, jetzt, dass Ive es hier. Das Problem ist, dass 1000 ist ein ziemlich langes Fenster für einen exponentiellen gleitenden Durchschnitt Im nicht sicher, gibt es ein Alpha, die den Durchschnitt über die letzten 1000 Zahlen, ohne Unterlauf in der Gleitkomma Berechnung. Aber, wenn Sie einen kleineren Durchschnitt wünschen, wie 30 Zahlen oder so, dieses ist eine sehr einfache und schnelle Weise, es zu tun. Beantwortet Jun 12 12 at 4:44 1 auf Ihrem Beitrag. Der exponentielle gleitende Durchschnitt kann zulassen, dass das Alpha variabel ist. Somit kann dies dazu verwendet werden, Zeitbasisdurchschnitte (z. B. Bytes pro Sekunde) zu berechnen. Wenn die Zeit seit dem letzten Akkumulator-Update mehr als 1 Sekunde beträgt, lassen Sie Alpha 1.0 sein. Andernfalls können Sie Alpha zulassen (usecs seit letztem update1000000). Ndash jxh Grundsätzlich möchte ich den gleitenden Durchschnitt eines laufenden Stroms eines Gleitkommazahls mit den neuesten 1000 Zahlen als Datenbeispiel zu verfolgen. Beachten Sie, dass im Folgenden die Summe als Elemente als addiert ergänzt wird, wobei kostspielige O (N) - Transversionen vermieden werden, um die Summe zu berechnen, die für den durchschnittlichen Bedarf erforderlich ist. Insgesamt wird ein anderer Parameter von T gebildet, um z. B. Mit einer langen langen, wenn insgesamt 1000 lange s, eine int für char s, oder eine doppelte bis total float s. Dies ist ein wenig fehlerhaft, dass Nennsignale an INTMAX vorbeiziehen könnten - wenn Sie darauf achten, dass Sie ein langes langes nicht signiertes verwenden konnten. Oder verwenden Sie ein zusätzliches Bool-Datenelement, um aufzuzeichnen, wenn der Container zuerst gefüllt wird, während numsamples rund um das Array (am besten dann umbenannt etwas harmlos wie pos). Man nehme an, daß der quadratische Operator (T-Abtastwert) tatsächlich quadratischer Operator (T-Abtastwert) ist. Ndash oPless Jun 8 14 um 11:52 Uhr oPless ahhh. Gut beobachtet. Eigentlich meinte ich, dass es sich um void operator () (T sample) handelt, aber natürlich könntet ihr auch irgendeine Notation verwenden, die ihr mochtet. Wird beheben, danke. Ndash Tony D Jun 8 14 um 14: 27Ein einfach zu bedienende digitale Filter Der exponentielle gleitende Durchschnitt (EMA) ist eine Art von unendlichen Impulsantwort (IIR) Filter, der in vielen eingebetteten DSP-Anwendungen verwendet werden kann. Es benötigt nur wenig RAM und Rechenleistung. Was ist ein Filter Filter kommen sowohl in analogen und digitalen Formen und existieren, um bestimmte Frequenzen aus einem Signal zu entfernen. Ein übliches Analogfilter ist das unten gezeigte Tiefpass-RC-Filter. Analoge Filter zeichnen sich durch ihre Frequenzantwort aus, wie viel die Frequenzen gedämpft (Amplitudengang) und verschoben (Phasengang) sind. Der Frequenzgang kann unter Verwendung einer Laplace-Transformation analysiert werden, die eine Übertragungsfunktion in der S-Domäne definiert. Für die obige Schaltung ist die Übertragungsfunktion gegeben durch: Wenn R gleich 1 Kiloohm und C gleich einem Mikrofarad ist, ist die Betragsantwort unten gezeigt. Beachten Sie, dass die x-Achse logarithmisch ist (jede Markierung ist 10 Mal größer als die letzte). Die y-Achse ist in Dezibel (das ist eine logarithmische Funktion des Ausgangs). Die Grenzfrequenz für diesen Filter beträgt 1000 rad oder 160 Hz. Dies ist der Punkt, bei dem weniger als die Hälfte der Leistung bei einer gegebenen Frequenz vom Eingang zum Ausgang des Filters übertragen wird. Bei der Abtastung eines Signals mit einem Analog-Digital-Wandler (ADC) müssen analoge Filter in eingebetteten Ausführungen verwendet werden. Der ADC erfasst nur Frequenzen, die bis zur Hälfte der Abtastfrequenz liegen. Wenn der ADC beispielsweise 320 Abtastungen pro Sekunde erfasst, wird das Filter (mit einer Grenzfrequenz von 160 Hz) zwischen dem Signal und dem ADC-Eingang platziert, um ein Aliasing zu verhindern (was ein Phänomen ist, bei dem höhere Frequenzen in dem abgetasteten Signal auftreten Niedrigere Frequenzen). Digitale Filter Digitale Filter dämpfen Frequenzen in der Software anstatt analoge Komponenten. Ihre Implementierung beinhaltet das Abtasten der analogen Signale mit einem ADC, wobei dann ein Softwarealgorithmus angewendet wird. Zwei gemeinsame Designansätze für die digitale Filterung sind FIR-Filter und IIR-Filter. FIR Filter Die Finite Impulse Response (FIR) Filter verwenden eine endliche Anzahl von Samples, um den Ausgang zu erzeugen. Ein einfacher gleitender Durchschnitt ist ein Beispiel eines Tiefpass-FIR-Filters. Höhere Frequenzen werden abgeschwächt, da die Mittelung das Signal glättet. Der Filter ist endlich, weil die Ausgabe des Filters durch eine endliche Anzahl von Eingangsabtastwerten bestimmt wird. Als Beispiel addiert ein 12-Punkt-Gleit-Mittelfilter die 12 jüngsten Abtastwerte, dividiert dann durch 12. Die Ausgabe von IIR-Filtern wird durch (bis zu) einer unendlichen Anzahl von Eingangsabtastwerten bestimmt. IIR-Filter Infinite Impulse Response (IIR) - Filter sind eine Art von Digitalfiltern, bei denen der Ausgang theoretisch in jedem Fall durch einen Eingang beeinflusst wird. Der exponentielle gleitende Durchschnitt ist ein Beispiel eines Tiefpass-IIR-Filters. Exponential Moving Average Filter Ein exponentieller gleitender Durchschnitt (EMA) wendet exponentielle Gewichte für jede Probe an, um einen Durchschnitt zu berechnen. Obwohl dies kompliziert scheint, ist die Gleichung, die in der digitalen Filterung Parlance als die Differenzgleichung zur Berechnung der Ausgabe bekannt ist, einfach. In der folgenden Gleichung ist y die Ausgabe x ist die Eingabe und alpha ist eine Konstante, die die Grenzfrequenz festlegt. Um zu analysieren, wie sich dieser Filter auf die Frequenz des Ausgangs auswirkt, wird die Z-Domänenübertragungsfunktion verwendet. Die Amplitudenantwort ist unten für Alpha gleich 0,5 gezeigt. Die y-Achse ist wiederum in Dezibel dargestellt. Die x-Achse ist logarithmisch von 0,001 bis pi. Die Real-Frequenz-Frequenz ordnet der x-Achse zu, wobei Null die Gleichspannung ist und pi gleich der Hälfte der Abtastfrequenz ist. Alle Frequenzen, die größer als die Hälfte der Abtastfrequenz sind, werden gelöscht. Wie erwähnt, kann ein analoges Filter praktisch alle Frequenzen im digitalen Signal unterhalb der halben Abtastfrequenz sicherstellen. Der EMA-Filter ist aus zwei Gründen vorteilhaft in eingebetteten Konstruktionen. Erstens ist es einfach, die Grenzfrequenz einzustellen. Eine Verringerung des Wertes von Alpha verringert die Grenzfrequenz des Filters, wie durch Vergleich der obigen Alpha-0,5-Kurve mit der unten gezeigten Kurve mit alpha 0,1 dargestellt wird. Zweitens ist die EMA einfach zu kodieren und erfordert nur eine geringe Menge an Rechenleistung und Speicher. Die Code-Implementierung des Filters verwendet die Differenzgleichung. Es gibt zwei Multiplikationsoperationen und eine Additionsoperation für jeden Ausgang, der die Operationen ignoriert, die zum Runden von Festkomma-Mathematik erforderlich sind. Nur das aktuellste Sample muss im RAM gespeichert werden. Dies ist wesentlich geringer als die Verwendung eines einfachen gleitenden Durchschnittsfilters mit N Punkten, die N Multiplikations - und Additionsoperationen sowie N Samples, die im RAM gespeichert werden sollen, erfordern. Der folgende Code implementiert den EMA-Filter mit 32-Bit-Fixpunkt-Mathematik. Der folgende Code ist ein Beispiel für die Verwendung der oben genannten Funktion. Fazit Filter, sowohl analoge als auch digitale, sind ein wesentlicher Bestandteil eingebetteter Designs. Sie ermöglichen es Entwicklern, unerwünschte Frequenzen zu befreien, wenn sie die Sensoreingänge analysieren. Damit digitale Filter nützlich sind, müssen analoge Filter alle Frequenzen über die Hälfte der Abtastfrequenz entfernen. Digitale IIR-Filter können leistungsstarke Werkzeuge in Embedded-Design, wo Ressourcen begrenzt werden. Der exponentielle gleitende Durchschnitt (EMA) ist ein Beispiel für einen solchen Filter, der in eingebetteten Designs aufgrund des geringen Speicher - und Rechenleistungsbedarfs gut funktioniert. Wie andere schon erwähnt haben, sollten Sie ein IIR-Filter (Endlosimpulsantwort) anstelle des FIR betrachten (Finite Impulse Response) Filter, den Sie jetzt verwenden. Es gibt mehr dazu, aber auf den ersten Blick werden FIR-Filter als explizite Windungen und IIR-Filter mit Gleichungen implementiert. Das besondere IIR-Filter, das ich viel in Mikrocontrollern verwende, ist ein einpoliges Tiefpaßfilter. Dies ist das digitale Äquivalent eines einfachen R-C-Analogfilters. Für die meisten Anwendungen haben diese bessere Eigenschaften als der Kastenfilter, den Sie verwenden. Die meisten Verwendungen eines Box-Filter, die ich begegnet bin, sind ein Ergebnis von jemand nicht Aufmerksamkeit in der digitalen Signalverarbeitung Klasse, nicht als Ergebnis der Notwendigkeit ihrer besonderen Eigenschaften. Wenn Sie nur wollen, um hohe Frequenzen zu dämpfen, dass Sie wissen, Rauschen sind, ist ein einpoliges Tiefpassfilter besser. Der beste Weg, um ein digitales in einem Mikrocontroller zu implementieren, ist in der Regel: FILT lt - FILT FF (NEW - FILT) FILT ist ein Stück persistenten Zustand. Dies ist die einzige persistente Variable, die Sie benötigen, um diesen Filter zu berechnen. NEU ist der neue Wert, den der Filter mit dieser Iteration aktualisiert. FF ist die Filterfraktion. Die die Schwere des Filters einstellt. Betrachten Sie diesen Algorithmus und sehen Sie, dass für FF 0 der Filter unendlich schwer ist, da sich der Ausgang nie ändert. Für FF 1 ist das eigentlich gar kein Filter, da der Ausgang nur dem Eingang folgt. Nützliche Werte sind dazwischen. Auf kleinen Systemen wählen Sie FF auf 12 N, so dass die Multiplikation mit FF als Rechtsverschiebung um N Bits erreicht werden kann. Beispielsweise könnte FF 116 sein und das Multiplizieren mit FF daher eine Rechtsverschiebung von 4 Bits. Andernfalls benötigt dieses Filter nur eine Subtraktion und eine Addition, obwohl die Zahlen in der Regel größer als der Eingangswert sein müssen (mehr über die numerische Genauigkeit in einem separaten Abschnitt weiter unten). Ich nehme in der Regel AD-Messwerte deutlich schneller als sie benötigt werden und wenden Sie zwei dieser Filter kaskadiert. Dies ist das digitale Äquivalent von zwei R-C-Filtern in Serie und dämpft um 12 dBoktave über der Rolloff-Frequenz. Allerdings für AD-Lesungen seine in der Regel mehr relevant, um das Filter im Zeitbereich zu betrachten, indem man seine Schrittantwort. Dies zeigt Ihnen, wie schnell Ihr System eine Änderung sehen wird, wenn die Sache, die Sie messen, ändert. Zur Erleichterung der Gestaltung dieser Filter (was nur bedeutet Kommissionierung FF und entscheiden, wie viele von ihnen zu kaskadieren), benutze ich mein Programm FILTBITS. Sie legen die Anzahl der Schaltbits für jede FF in der kaskadierten Filterreihe fest und berechnen die Schrittantwort und andere Werte. Eigentlich habe ich in der Regel laufen diese über mein Wrapper-Skript PLOTFILT. Dies führt FILTBITS, die eine CSV-Datei macht, dann die CSV-Datei. Beispielsweise ist hier das Ergebnis von PLOTFILT 4 4: Die beiden Parameter zu PLOTFILT bedeuten, dass es zwei Filter gibt, die von dem oben beschriebenen Typ kaskadiert sind. Die Werte von 4 geben die Anzahl der Schaltbits an, um die Multiplikation mit FF zu realisieren. Die beiden FF-Werte sind daher in diesem Fall 116. Die rote Spur ist die Einheit Schritt Antwort, und ist die Hauptsache zu betrachten. Dies bedeutet beispielsweise, dass sich der Ausgang des kombinierten Filters auf 90 des neuen Wertes in 60 Iterationen niederschlägt, falls sich der Eingang sofort ändert. Wenn Sie ca. 95 Einschwingzeit kümmern, dann müssen Sie etwa 73 Iterationen warten, und für 50 Einschwingzeit nur 26 Iterationen. Die grüne Kurve zeigt Ihnen den Ausgang einer einzelnen Amplitude. Dies gibt Ihnen eine Vorstellung von der zufälligen Rauschunterdrückung. Es sieht aus wie keine einzelne Probe wird mehr als eine 2,5 Änderung in der Ausgabe verursachen. Die blaue Spur soll ein subjektives Gefühl geben, was dieser Filter mit weißem Rauschen macht. Dies ist kein strenger Test, da es keine Garantie gibt, was genau der Inhalt der Zufallszahlen war, die als der weiße Rauscheneingang für diesen Durchlauf von PLOTFILT ausgewählt wurden. Seine nur, um Ihnen ein grobes Gefühl, wie viel es gequetscht werden und wie glatt es ist. PLOTFILT, vielleicht FILTBITS, und viele andere nützliche Dinge, vor allem für PIC-Firmware-Entwicklung ist verfügbar in der PIC Development Tools-Software-Release auf meiner Software-Downloads-Seite. Hinzugefügt über numerische Genauigkeit Ich sehe aus den Kommentaren und nun eine neue Antwort, dass es Interesse an der Diskussion der Anzahl der Bits benötigt, um diesen Filter zu implementieren. Beachten Sie, dass das Multiplizieren mit FF Log 2 (FF) neue Bits unterhalb des Binärpunkts erzeugt. Auf kleinen Systemen wird FF gewöhnlich mit 12 N gewählt, so daß diese Multiplikation tatsächlich durch eine Rechtsverschiebung von N Bits realisiert wird. FILT ist daher meist eine feste Ganzzahl. Beachten Sie, dass dies ändert keine der Mathematik aus der Prozessoren Sicht. Wenn Sie z. B. 10-Bit-AD-Lesungen und N 4 (FF 116) filtern, benötigen Sie 4 Fraktionsbits unter den 10-Bit-Integer-AD-Messwerten. Einer der meisten Prozessoren, youd tun 16-Bit-Integer-Operationen aufgrund der 10-Bit-AD-Lesungen. In diesem Fall können Sie immer noch genau die gleichen 16-Bit-Integer-Opertions, aber beginnen mit der AD-Lesungen um 4 Bits verschoben verschoben. Der Prozessor kennt den Unterschied nicht und muss nicht. Das Durchführen der Mathematik auf ganzen 16-Bit-Ganzzahlen funktioniert, ob Sie sie als 12,4 feste oder wahre 16-Bit-Ganzzahlen (16,0 Fixpunkt) betrachten. Im Allgemeinen müssen Sie jedem Filterpole N Bits hinzufügen, wenn Sie aufgrund der numerischen Darstellung kein Rauschen hinzufügen möchten. Im obigen Beispiel müsste das zweite Filter von zwei 1044 18 Bits haben, um keine Informationen zu verlieren. In der Praxis auf einer 8-Bit-Maschine bedeutet, dass youd 24-Bit-Werte verwenden. Technisch nur der zweite Pol von zwei würde den größeren Wert benötigen, aber für Firmware Einfachheit ich in der Regel die gleiche Darstellung, und damit der gleiche Code, für alle Pole eines Filters. Normalerweise schreibe ich eine Unterroutine oder Makro, um eine Filterpol-Operation durchzuführen, dann gelten, dass für jeden Pol. Ob eine Unterroutine oder ein Makro davon abhängt, ob Zyklen oder Programmspeicher in diesem Projekt wichtiger sind. So oder so, ich benutze einige Scratch-Zustand, um NEU in die subroutinemacro, die FILT Updates, sondern auch lädt, dass in den gleichen Kratzer NEU war in. Dies macht es einfach, mehrere Pole anzuwenden, da die aktualisierte FILT von einem Pole ist die NEUE Der nächsten. Wenn ein Unterprogramm, ist es sinnvoll, einen Zeiger auf FILT auf dem Weg in, die auf nur nach FILT auf dem Weg nach draußen aktualisiert wird. Auf diese Weise arbeitet das Unterprogramm automatisch auf aufeinanderfolgenden Filtern im Speicher, wenn es mehrmals aufgerufen wird. Mit einem Makro benötigen Sie nicht einen Zeiger, da Sie in der Adresse passieren, um auf jeder Iteration zu arbeiten. Code-Beispiele Hier ist ein Beispiel für ein Makro wie oben für eine PIC 18 beschrieben: Und hier ist ein ähnliches Makro für eine PIC 24 oder dsPIC 30 oder 33: Beide Beispiele sind als Makros mit meinem PIC-Assembler-Präprozessor implementiert. Die mehr fähig ist als eine der eingebauten Makroanlagen. Clabacchio: Ein weiteres Thema, das ich erwähnen sollte, ist die Firmware-Implementierung. Sie können eine einpolige Tiefpassfilter-Subroutine einmal schreiben und dann mehrmals anwenden. Tatsächlich schreibe ich normalerweise solch eine Unterroutine, um einen Zeiger im Gedächtnis in den Filterzustand zu nehmen, dann ihn voranbringen den Zeiger, so daß er nacheinander leicht aufgerufen werden kann, um mehrpolige Filter zu verwirklichen. Ndash Olin Lathrop Apr 20 12 at 15:03 1. Dank sehr viel für Ihre Antworten - alle von ihnen. Ich beschloss, dieses IIR-Filter zu verwenden, aber dieser Filter wird nicht als Standard-Tiefpaßfilter verwendet, da ich die Zählerwerte berechnen und sie vergleichen muss, um Änderungen in einem bestimmten Bereich zu erkennen. Da diese Werte von sehr unterschiedlichen Dimensionen abhängig von Hardware Ich wollte einen Durchschnitt nehmen, um in der Lage sein, auf diese Hardware spezifischen Änderungen automatisch reagieren. Wenn Sie mit der Beschränkung einer Macht von zwei Anzahl von Elementen zu durchschnittlich leben können (dh 2,4,8,16,32 etc), dann kann die Teilung einfach und effizient auf einem getan werden Low-Performance-Mikro ohne dedizierte Division, weil es als Bit-Shift durchgeführt werden kann. Jede Schicht rechts ist eine Macht von zwei zB: Der OP dachte, er hatte zwei Probleme, die Teilung in einem PIC16 und Speicher für seinen Ringpuffer. Diese Antwort zeigt, dass die Teilung nicht schwierig ist. Zwar adressiert es nicht das Gedächtnisproblem, aber das SE-System erlaubt Teilantworten, und Benutzer können etwas von jeder Antwort für selbst nehmen, oder sogar redigieren und kombinieren andere39s Antworten. Da einige der anderen Antworten eine Divisionsoperation erfordern, sind sie ähnlich unvollständig, da sie nicht zeigen, wie dies auf einem PIC16 effizient erreicht werden kann. Ndash Martin Apr 20 12 at 13:01 Es gibt eine Antwort für einen echten gleitenden Durchschnitt Filter (auch bekannt als Boxcar-Filter) mit weniger Speicher Anforderungen, wenn Sie dont mind Downsampling. Es heißt ein kaskadiertes Integrator-Kamm-Filter (CIC). Die Idee ist, dass Sie einen Integrator, die Sie nehmen Differenzen über einen Zeitraum, und die wichtigsten Speicher-sparende Gerät ist, dass durch Downsampling, müssen Sie nicht jeden Wert des Integrators zu speichern. Es kann mit dem folgenden Pseudocode implementiert werden: Ihre effektive gleitende durchschnittliche Länge ist decimationFactorstatesize, aber Sie müssen nur um Stateize Proben zu halten. Offensichtlich können Sie bessere Leistung erzielen, wenn Ihr stateize und decimationFactor Potenzen von 2 sind, so dass die Divisions - und Restoperatoren durch Shifts und Masken ersetzt werden. Postscript: Ich stimme mit Olin, dass Sie immer sollten einfache IIR-Filter vor einem gleitenden durchschnittlichen Filter. Wenn Sie die Frequenz-Nullen eines Boxcar-Filters nicht benötigen, wird ein 1-poliger oder 2-poliger Tiefpassfilter wahrscheinlich gut funktionieren. Auf der anderen Seite, wenn Sie für die Zwecke der Dezimierung filtern (mit einer hohen Sample-Rate-Eingang und Mittelung es für die Verwendung durch einen Low-Rate-Prozess), dann kann ein CIC-Filter genau das, was Sie suchen. (Vor allem, wenn Sie stateize1 verwenden und den Ringbuffer insgesamt mit nur einem einzigen vorherigen Integrator-Wert zu vermeiden) Theres einige eingehende Analyse der Mathematik hinter der Verwendung der ersten Ordnung IIR-Filter, Olin Lathrop bereits beschrieben hat auf der Digital Signal Processing Stack-Austausch (Enthält viele schöne Bilder.) Die Gleichung für diese IIR-Filter ist: Dies kann mit nur Ganzzahlen und keine Division mit dem folgenden Code implementiert werden (möglicherweise benötigen einige Debugging, wie ich aus dem Speicher wurde.) Dieser Filter approximiert einen gleitenden Durchschnitt von Die letzten K Proben durch Setzen des Wertes von alpha auf 1K. Führen Sie dies im vorherigen Code durch die Definition von BITS auf LOG2 (K), dh für K 16 gesetzt BITS auf 4, für K 4 gesetzt BITS auf 2, etc. (Ill Überprüfung der Code hier aufgelistet, sobald ich eine Änderung und Bearbeiten Sie diese Antwort, wenn nötig.) Antwort # 1 am: Juni 23, 2010, um 4:04 Uhr Heres ein einpoliges Tiefpassfilter (gleitender Durchschnitt, mit Cutoff-Frequenz CutoffFrequency). Sehr einfach, sehr schnell, funktioniert super, und fast kein Speicher Overhead. Hinweis: Alle Variablen haben einen Bereich über die Filterfunktion hinaus, mit Ausnahme der Übergabe in newInput. Hinweis: Dies ist ein einstufiger Filter. Mehrere Stufen können zusammen kaskadiert werden, um die Schärfe des Filters zu erhöhen. Wenn Sie mehr als eine Stufe verwenden, müssen Sie DecayFactor anpassen (was die Cutoff-Frequenz betrifft), um sie zu kompensieren. Und natürlich alles, was Sie brauchen, ist die beiden Zeilen überall platziert, brauchen sie nicht ihre eigene Funktion. Dieser Filter hat eine Rampenzeit, bevor der gleitende Durchschnitt diejenige des Eingangssignals darstellt. Wenn Sie diese Rampenzeit umgehen müssen, können Sie MovingAverage einfach auf den ersten Wert von newInput anstelle von 0 initialisieren und hoffen, dass der erste newInput kein Ausreißer ist. (CutoffFrequencySampleRate) einen Bereich zwischen 0 und 0,5 hat. DecayFactor ist ein Wert zwischen 0 und 1, in der Regel in der Nähe von 1. Single-precision Schwimmer sind gut genug für die meisten Dinge, ich bevorzuge nur Doppel. Wenn Sie mit ganzen Zahlen bleiben müssen, können Sie DecayFactor und Amplitude Factor in Fractional Integers umwandeln, in denen der Zähler als Integer gespeichert wird und der Nenner eine Ganzzahl von 2 ist (so können Sie Bit-Shift nach rechts als die Nenner, anstatt sich während der Filterschleife teilen zu müssen). Zum Beispiel, wenn DecayFactor 0.99, und Sie Ganzzahlen verwenden möchten, können Sie DecayFactor 0.99 65536 64881. Und dann immer wenn Sie multiplizieren mit DecayFactor in Ihrer Filterschleife, nur verschieben Sie das Ergebnis 16. Für weitere Informationen über dieses, ein ausgezeichnetes Buch thats Online, Kapitel 19 auf rekursive Filter: dspguidech19.htm PS Für das Moving Average-Paradigma, einen anderen Ansatz für die Einstellung DecayFactor und AmplitudeFactor, die möglicherweise mehr relevant für Ihre Bedürfnisse, können Sie sagen, dass Sie wollen, dass die vorherigen, etwa 6 Artikeln gemittelt, es diskret tun, fügen Sie 6 Elemente und teilen durch 6, so Können Sie den AmplitudeFactor auf 16 und DecayFactor auf (1.0 - AmplitudeFactor) einstellen. Antwortete May 14 12 at 22:55 Jeder andere hat kommentiert gründlich über den Nutzen der IIR vs FIR, und auf Power-of-two-Division. Id nur, um einige Implementierungsdetails zu geben. Das unten genannte funktioniert gut auf kleinen Mikrocontrollern ohne FPU. Es gibt keine Multiplikation, und wenn Sie N eine Potenz von zwei halten, ist die gesamte Division ein-Zyklus-Bit-Verschiebung. Basic FIR-Ringpuffer: Halten Sie einen laufenden Puffer der letzten N-Werte und einen laufenden SUM aller Werte im Puffer. Jedes Mal, wenn eine neue Probe kommt, subtrahieren Sie den ältesten Wert im Puffer von SUM, ersetzen Sie ihn durch das neue Sample, fügen Sie das neue SUM zu SUM hinzu und geben Sie SUMN aus. Modifizierter IIR-Ringpuffer: Halten Sie einen laufenden SUM der letzten N-Werte. Jedes Mal, wenn ein neues Sample in SUM - SUMN kommt, fügen Sie das neue Sample hinzu und geben SUMN aus. Antwort # 1 am: August 28, 2008, um 13:45 Uhr Wenn Sie 399m lesen Sie Recht, you39re beschreiben ein erster Ordnung IIR-Filter der Wert you39re subtrahieren isn39t der älteste Wert, der herausfällt, sondern ist stattdessen der Durchschnitt der vorherigen Werte. Erstklassige IIR-Filter können sicherlich nützlich sein, aber I39m nicht sicher, was du meinst, wenn Sie vorschlagen, dass der Ausgang ist der gleiche für alle periodischen Signale. Bei einer Abtastrate von 10 kHz liefert das Einspeisen einer 100 Hz-Rechteckwelle in ein 20-stufiges Kastenfilter ein Signal, das für 20 Abtastungen gleichmäßig ansteigt, für 30 sitzt, für 20 Abtastungen gleichmäßig sinkt und für 30 sitzt. Ein erster Ordnung IIR-Filter. Ndash Supercat Aug 28 13 am 15:31 wird eine Welle, die scharf anfängt zu steigen und allmählich Niveaus in der Nähe (aber nicht auf) das Eingabe-Maximum, dann scharf beginnt zu fallen und allmählich in der Nähe (aber nicht auf) der Eingabe Minimum. Sehr unterschiedliches Verhalten. Ndash Supercat Ein Problem ist, dass ein einfacher gleitender Durchschnitt kann oder auch nicht nützlich sein. Mit einem IIR-Filter können Sie einen schönen Filter mit relativ wenigen Calcs erhalten. Die FIR Sie beschreiben kann Ihnen nur ein Rechteck in der Zeit - ein sinc in freq - und Sie können nicht die Seitenkeulen zu verwalten. Es kann lohnt sich, in ein paar ganzzahlige Multiplikatoren zu werfen, um es eine schöne symmetrische abstimmbare FIR, wenn Sie die Zeitschaltuhren ersparen können. Ndash ScottSeidman: Keine Notwendigkeit für Multiplikatoren, wenn man einfach jede Stufe der FIR entweder den Durchschnitt der Eingabe auf diese Stufe und ihre vorherigen gespeicherten Wert, und dann speichern Sie die Eingabe (wenn man hat Der numerische Bereich, man könnte die Summe anstatt den Durchschnitt verwenden). Ob das besser als ein Box-Filter ist, hängt von der Anwendung ab (die Sprungantwort eines Boxfilters mit einer Gesamtverzögerung von 1ms wird zum Beispiel eine nasty d2dt Spike haben, wenn die Eingangsänderung und wieder 1ms später, aber das Minimum haben wird Mögliche ddt für einen Filter mit einer Gesamtverzögerung von 1ms). Ndash supercat Wie mikeselectricstuff sagte, wenn Sie wirklich brauchen, um Ihren Speicherbedarf zu reduzieren, und Sie dont dagegen Ihre Impulsantwort ist eine exponentielle (anstelle eines rechteckigen Puls), würde ich für einen exponentiellen gleitenden durchschnittlichen Filter gehen . Ich nutze sie ausgiebig. Mit dieser Art von Filter, brauchen Sie nicht jeden Puffer. Sie brauchen nicht zu speichern N Vergangenheit Proben. Nur einer. So werden Ihre Speicheranforderungen um einen Faktor von N reduziert. Auch brauchen Sie keine Division für das. Nur Multiplikationen. Wenn Sie Zugriff auf Gleitpunktarithmetik haben, verwenden Sie Fließkomma-Multiplikationen. Andernfalls können ganzzahlige Multiplikationen und Verschiebungen nach rechts erfolgen. Allerdings sind wir im Jahr 2012, und ich würde Ihnen empfehlen, Compiler (und MCUs), mit denen Sie mit Gleitkommazahlen arbeiten können. Abgesehen davon, dass mehr Speicher effizienter und schneller (Sie dont haben, um Elemente in jedem kreisförmigen Puffer zu aktualisieren), würde ich sagen, es ist auch natürlich. Weil eine exponentielle Impulsantwort besser auf die Art und Weise reagiert, wie sich die Natur verhält, in den meisten Fällen. Ein Problem mit dem IIR-Filter fast berührt von Olin und Supercat, aber anscheinend von anderen ignoriert ist, dass die Rundung nach unten führt einige Ungenauigkeiten (und möglicherweise Biastruncation). Unter der Annahme, dass N eine Potenz von zwei ist und nur ganzzahlige Arithmetik verwendet wird, beseitigt das Shift-Recht systematisch die LSBs des neuen Samples. Das bedeutet, dass, wie lange die Serie jemals sein könnte, wird der Durchschnitt nie berücksichtigen. Nehmen wir z. B. eine langsam abnehmende Reihe (8,8,8,8,7,7,7,7,6,6) an und nehmen an, daß der Durchschnitt tatsächlich 8 ist. Die Faust 7 Probe bringt den Durchschnitt auf 7, unabhängig von der Filterstärke. Nur für eine Probe. Gleiche Geschichte für 6, usw. Jetzt denke an das Gegenteil. Die serie geht auf. Der Durchschnitt bleibt auf 7 für immer, bis die Probe groß genug ist, um es zu ändern. Natürlich können Sie für die Bias korrigieren, indem Sie 12N2, aber das nicht wirklich lösen, die Präzision Problem. In diesem Fall bleibt die abnehmende Reihe für immer bei 8, bis die Probe 8-12 (N2) ist. Für N4 zum Beispiel, wird jede Probe über Null halten den Durchschnitt unverändert. Ich glaube, eine Lösung für das implizieren würde, um einen Akkumulator der verlorenen LSBs halten. Aber ich habe es nicht weit genug, um Code bereit, und Im nicht sicher, es würde nicht schaden, die IIR Macht in einigen anderen Fällen der Serie (zum Beispiel, ob 7,9,7,9 würde durchschnittlich 8 dann). Olin, Ihre zweistufige Kaskade würde auch eine Erklärung brauchen. Halten Sie zwei durchschnittliche Werte mit dem Ergebnis der ersten in die zweite in jeder Iteration eingezogen halten. Was ist der Vorteil davon

No comments:

Post a Comment